集成电路 2022-11-03
人工智能 2022-11-01
生物制药 2022-11-03
新能源 2022-11-23

人工智能


2022-11-01

 第一次工业革命代表--蒸汽机标志着蒸汽时代的到来;第二次工业革命代表--发电机标志着电气时代的到来;第三次工业革命的代表--计算机和互联网标志信息时代的来临。那么人工智能能否标志着人类进入智能时代?全球产业界充分认识到人工智能技术正引领新一轮产业变革,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。

一、人工智能的概念

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

分解一下,人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 2017年12月,人工智能入选“2017年度中国媒体十大流行语”。 2021年9月25日,为促进人工智能健康发展,《新一代人工智能伦理规范》发布。

人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。

尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。 

人工智能是一门边缘学科,属于自然科学和社会科学的交叉。

人工智能就其本质而言,是对人的思维的信息过程的模拟。

对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。

弱人工智能如今不断地迅猛发展,尤其是2008年经济危机后,美日欧希望借机器人等实现再工业化,工业机器人以比以往任何时候更快的速度发展,更加带动了弱人工智能和相关领域产业的不断突破,很多必须用人来做的工作如今已经能用机器人实现。

而强人工智能则暂时处于瓶颈,还需要科学家们和人类的努力。

二、发展历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。但是人工智能的历史开端还要更早一些。

 1、 人工智能的诞生(20世纪40~60年代)

  1950年,著名的图灵测试诞生,按照“人工智能之父”艾伦·图灵的定义:如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。同一年,图灵还预言会创造出具有真正智能的机器的可能性。

1956年夏天第一次人工智能研讨会,被认为是人工智能诞生的标志。会上首次提出了“人工智能”这个概念,人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

  2、 人工智能的黄金时代(20世纪60~70年代)

  1966年~1972年期间,美国斯坦福国际研究所研制出机器人Shakey,这是首台采用人工智能的移动机器人。美国麻省理工学院(MIT)的魏泽鲍姆发布了世界上第一个聊天机器人ELIZA。ELIZA的智能之处在于她能通过脚本理解简单的自然语言,并能产生类似人类的互动。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

  3、 人工智能的低谷(20世纪70~80年代)

20世纪70年代初,人工智能遭遇了瓶颈。当时的计算机有限的内存和处理速度不足以解决任何实际的人工智能问题。要求程序对这个世界具有儿童水平的认识,研究者们很快发现这个要求太高了:1970年没人能够做出如此巨大的数据库,也没人知道一个程序怎样才能学到如此丰富的信息。由于缺乏进展,对人工智能提供资助的机构(如英国政府、美国国防部高级研究计划局和美国国家科学委员会)对无方向的人工智能研究逐渐停止了资助。美国国家科学委员会(NRC)在拨款二千万美元后停止资助。

  4、 人工智能的繁荣期(1980年~1987年)

  1981年日本经济产业省拨款8.5亿美元用以研发第五代计算机项目,在当时被叫做人工智能计算机。随后,英国、美国纷纷响应,开始向信息技术领域的研究提供大量资金。

1984年在美国人道格拉斯·莱纳特的带领下,启动了Cyc项目,其目标是使人工智能的应用能够以类似人类推理的方式工作。1986年美国发明家查尔斯·赫尔制造出人类历史上首个3D打印机。这些发明创造很大提升了人类社会的生产力,科技创造,极大的推动了社会的发展。

  5、 人工智能的冬天(1987年~1993年)

“AI(人工智能)之冬”一词由经历过1974年经费削减的研究者们创造出来。他们注意到了对专家系统的狂热追捧,预计不久后人们将转向失望。事实被他们不幸言中,专家系统的实用性仅仅局限于某些特定情景。到了上世纪80年代晚期,美国国防部高级研究计划局(DARPA)的新任领导认为人工智能并非“下一个浪潮”,拨款将倾向于那些看起来更容易出成果的项目。

  6、 人工智能真正的春天(1993年至今)

随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

三、发展阶段

按照人工智能的发展程度,行业一般将其分为计算智能、感知智能和认知智能三个层次。其中,计算智能阶段指机器能够像人类一样进行计算,诸如神经网络和遗传算法的出现,使得机器能够更高效、快速处理海量的数据;感知智能阶段指机器能听懂我们的语言、看懂世界万物,语音和视觉识别就属于这一范畴,这些技术能够更好的辅助人类高效完成任务;认知智能阶段指,在这一阶段,机器将能够主动思考并采取行动,实现全面辅助甚至替代人类工作。目前,全球的人工智能仍处于感知智能的发展阶段。

人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。

有关不同层级人工智能的几个基本定义:

1)弱人工智能:也称限制领域人工智能或者应用型人工智能。

指的是专注于且只能解决特定领域问题的人工智能,毫无疑问,我们今天看到的所有人工智能算法和应用都属于弱人工智能的范畴,AlphaGo是弱人工智能的一个最好实例。AlphaGo虽然在围棋领域超越了人类最顶尖选手,但它的能力也仅止于围棋。一般而言,限于弱人工智能在功能上的局限性,人们更愿意将弱人工智能看成是人类的工具,而不会将弱人工智能视成威胁。

2)强人工智能:又称通用人工智能或者完全人工智能,指的是可以胜任人类所有工作的人工智能,人可以做什么,强人工智能就可以做什么,这种定义过于宽泛,缺乏一个量化的标准来评估什么样的计算机程序才是强人工智能为此不同的研究者提出了许多不同的建议。

在强人工智能的定义里存在一个关键的的专业性问题:强人工智能是否有必要具备人类的意识?有些研究者认为只要只有具备人类意识的人工智能才可以叫强人工智能。另一些研究者则说,强人工智能只需要具备胜任人类所有工作的能力就可以了,未必需要人类的意识,也就是说,一旦牵涉“意识”,强人工智能的定义和评估标准就会变得异常复杂,而人们对于强人工智能的担忧也主要来源于此。

3)超人工智能:假设计算机程序通过不断发展,可以比世界上最聪明的人类还聪明,那么由此产生的人工智能系统就可以被称为超人工智能。

与弱人工智能、强人工智能相比,超人工智能的定义最为模糊,因为没人知道超越人类最高水平的智慧,到底会表现为何种能力。首先我们不知道强于人类的智慧形式是怎样的一种存在,现在去谈论超人工智能和人类的关系不仅仅为时过早,而是根本不存在可以清晰界定的讨论对象,其次我们没有办法也没有经验去预测超人工智能到底是一种不现实的幻想还是一种在未来必定会降临的结局,也就是说,我们根本无法准确推断到底计算机程序有没有能力达到这一目标。

显然如果公众对人工智能会不会挑战威胁人类有担忧的话,公众心目中所担心的那个人工智能,基本上属于这里所说的强人工智能和超人工智能。

弱人工智能如今不断地迅猛发展,尤其是2008年经济危机后,美日欧希望借机器人等实现再工业化,工业机器人以比以往任何时候更快的速度发展,更加带动了弱人工智能和相关领域产业的不断突破,很多必须用人来做的工作如今已经能用机器人实现。

而强人工智能则暂时处于瓶颈,还需要科学家们和人类的努力。

四、研究价值

例如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因此当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,另一方面又转向更有意义、更加困难的目标。

通常,“机器学习”的数学基础是“统计学”、“信息论”和“控制论”。还包括其他非数学学科。这类“机器学习”对“经验”的依赖性很强。计算机需要不断从解决一类问题的经验中获取知识,学习策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验,就像普通人一样。我们可以将这样的学习方式称之为“连续型学习”。但人类除了会从经验中学习之外,还会创造,即“跳跃型学习”。这在某些情形下被称为“灵感”或“顿悟”。一直以来,计算机最难学会的就是“顿悟”。或者再严格一些来说,计算机在学习和“实践”方面难以学会“不依赖于量变的质变”,很难从一种“质”直接到另一种“质”,或者从一个“概念”直接到另一个“概念”。正因为如此,这里的“实践”并非同人类一样的实践。人类的实践过程同时包括经验和创造。

这是智能化研究者梦寐以求的东西。

2013年,帝金数据普数中心数据研究员S.C WANG开发了一种新的数据分析方法,该方法导出了研究函数性质的新方法。作者发现,新数据分析方法给计算机学会“创造”提供了一种方法。本质上,这种方法为人的“创造力”的模式化提供了一种相当有效的途径。这种途径是数学赋予的,是普通人无法拥有但计算机可以拥有的“能力”。从此,计算机不仅精于算,还会因精于算而精于创造。计算机学家们应该斩钉截铁地剥夺“精于创造”的计算机过于全面的操作能力,否则计算机真的有一天会“反捕”人类。

当回头审视新方法的推演过程和数学的时候,作者拓展了对思维和数学的认识。数学简洁,清晰,可靠性、模式化强。在数学的发展史上,处处闪耀着数学大师们创造力的光辉。这些创造力以各种数学定理或结论的方式呈现出来,而数学定理最大的特点就是:建立在一些基本的概念和公理上,以模式化的语言方式表达出来的包含丰富信息的逻辑结构。应该说,数学是最单纯、最直白地反映着(至少一类)创造力模式的学科